Феномены

Михаил Гельфанд. Геном: проникнуть в прошлое, изменить будущее

Интервью брала Анна Натитник

Геномика — раздел биологии, изучающий геномы живых организмов, — сформировалась в 1980-е годы. За столь короткий срок ей удалось найти ответы на многие вопросы, веками занимавшие человечество. Что мы узнали о мире и о себе благодаря прочтению ДНК и какие перспективы открывает перед нами эта наука, рассказывает доктор биологических наук, заместитель директора Института проблем передачи информации РАН, профессор факультета биоинженерии и биоинформатики МГУ им. М.В. Ломоносова Михаил Гельфанд.

Для начала давайте определим термины, которые будем использовать в разговоре. Что такое ДНК, ген, геном?

ДНК — сокращенное название дезоксирибонуклеиновой кислоты. Это очень длинная молекула, состоящая из элементарных единиц — нуклеотидов (от латинского «nucleus» — ядро: ДНК находится в ядре клетки). Отдельные участки этой молекулы называются генами — они кодируют белки и передают признаки от родителей потомкам. Белки — это тоже молекулы, они состоят из аминокислот. Существуют правила пересчета нуклеотидов в аминокислоты — это называется генетический код. Говорить об определении чьего-то генетического кода не очень правильно, потому что почти у всех живых существ этот код одинаковый (есть редкие исключения, и их отдельно изучают). Геном — это в каком-то смысле синоним ДНК, совокупность всех генов организма.

Сколько генов у разных организмов?

У человека — примерно 25 тысяч, у типичной бактерии — от одной до восьми тысяч, у очень маленьких бактерий — сотни, у вирусов — от нескольких штук до тысячи. У дрожжей — 13 тысяч. У мышки, как у человека, 25 тысяч генов, так что с этой точки зрения мы не сложнее, чем она.

Корректно ли говорить о «расшифровке» генома? Это правильный термин?

Неправильный. Если мы что-то расшифровали, значит, мы можем это прочитать и понять, что там написано. В данном случае это не совсем так, хотя биоинформатика именно этим и занимается. Обычно, когда говорят о расшифровке генома, имеют в виду просто определение последовательности ДНК: была ДНК в виде молекулы, а теперь стала в виде цепочки символов в компьютере. Этот процесс называют секвенированием.

Когда научились определять последовательность ДНК?

Первые методы появились в 1977 году, их независимо друг от друга разработали Фредерик Сенгер и Уолтер Гилберт вместе с Аланом Максамом (Сенгер и Гилберт в 1980 году получили за это Нобелевскую премию). Эти методы были довольно медленные. Более поздние индустриальные методы были основаны на сенгеровской технике. Сейчас появилась еще ­дюжина новых методов и, соответственно, машин для определения последовательности — секвенаторов.

Каково практическое применение секвенирования генома?

Одно из основных практических приложений — в разных изводах медицинской генетики. Эта наука занимается определением болезней или предрасположенностей человека, которые передаются по наследству.

Очень важная область применения — онкология. Рак — болезнь генома. В клетке случаются мутации, и она начинает себя вести ненормальным образом: бесконтрольно делиться. Есть надежда, что если мы поймем этот механизм, то сможем как-то бороться с болезнью. В этой области ведется много работ: ­сравнивают образцы из опухоли и из клетки нормальной ткани, смотрят, что сломалось в геноме, отчего клетка стала раковой, почему опухоль приобрела способность метастазировать, и пытаются определить закономерности.

Уточняется диагноз рака — это существенный прогресс в науке. Сначала рак классифицировали по месту: рак языка, легких и т. п. Затем — по форме клеток: например, немелкоклеточный рак легких. Теперь начинают классифицировать по молекулярным поломкам, по причинам, из-за которых клетка начала перерождаться. Нормальная клетка понимает, в какой ткани находится, и если она случайно отрывается и попадает в другую ткань, то умирает. Она понимает, что у нее есть соседи, поэтому не надо бесконт­рольно делиться, и если ей очень хочется делиться, она совершает самоубийство. Все эти механизмы должны сломаться, чтобы клетка стала злокачественной. Поломки могут происходить в разных местах.

Поняв природу рака, мы сможем эффективнее его лечить?

Да. Например, есть лекарства, которые людям с одной мутацией помогают, а с другой — нет. Зная молекулярный механизм действия этих лекарств, можно выделить группу пациентов, на которых оно будет действовать, и давать его ­прицельно. А остальных этим лекарством не травить (все противораковые лекарства ядовитые) и пытаться лечить их иначе. Сейчас пациентов уже проверяют на некоторые известные мутации, и в ближайшем будущем это, скорее всего, станет стандартной процедурой — по крайней мере, на Западе.

Получается, что для разных мутаций нужно разрабатывать отдельные лекарства?

Да, волшебной пули нет и, по-видимому, быть не может, ведь то, что мы называем раком, — общая этикетка для разнообразных болезней. То есть нужно создавать разные лекарства. С одной стороны, это прекрасно: лечение станет более точным, медицина — персональной и т. д. Но, с другой стороны, рынок резко стратифицируется. Людей, которым потребуется каждое конкретное лекарство, станет значительно меньше, и у фармкомпаний серьезно упадут продажи. А разрабатывать новые лекарства очень дорого. Так что, думаю, в какой-то момент это станет просто невыгодно.

Это касается только противораковых препаратов или всех лекарств вообще?

Антибиотиков — точно. Затраты на их разработку сопоставимы с затратами на создание прочих лекарств, а отдача существенно ниже. ­Во-первых, антибиотики принимают ­недолго — курсом, скажем, по две недели, во-вторых, они быстро устаревают, к ним формируется устойчивость. В результате за последние годы новых классов антибиотиков вообще не появлялось, новых антибиотиков — все меньше. А старые перестают действовать.

С обычными лекарствами история другая хотя бы потому, что они не устаревают. Кроме того, существуют препараты, которые можно принимать всю жизнь, и уже за счет них фармкомании отбивают расходы на разработку всех прочих, даже не удавшихся лекарств.

Почему антибиотики устаревают?

Как только появляется новый лекарственный антибиотик, у бактерий, на которые он действует, вырабатывается устойчивость к нему. Что значит «появляется лекарственный антибиотик»? В основе антибиотика лежит природный продукт, который те же самые бактерии или грибки создали, чтобы травить других существ. Например, в почве много разных бактерий, там все время идет война за ресурс, и преимущество у тех, кто может отравить других. Скажем, упало яблоко и начало гнить. Его тут же заселяют разнообразные грибки и бактерии и хотят его съесть. Но дрожжи быстро перерабатывают сахара, которые есть в яблоке, в этиловый спирт (это тоже антибиотик) и травят им конкурентов, то есть бактерии. Более того, они используют свой яд как дополнительный ресурс: убив всех, они перерабатывают спирт в энергию и пользуются ею.

Одновременно у бактерий появляются средства защиты. Например, антибиотик присоединяется к жизненно важному белку бактерии и отравляет его — белок перестает работать, и бактерия умирает. Но если поменять место, к которому должен прилипнуть антибиотик, он перестанет действовать на белок и бактерия станет лекарственно устойчивой. Ясно, что волевым усилием бактерия не может ничего изменить у себя в геноме. Но в нем постоянно происходят случайные мутации, и, когда появляется новый фактор отбора (антибиотик), преимущество приобретают те клетки, у которых случилась нужная мутация: они становятся устойчивыми, а остальные постепенно умирают.

Бактерии, вызывающие болезни, обычно воюют только с нашей иммунной системой — конкурентов в виде других бактерий (то есть производителей антибиотиков) у них, как правило, нет. Когда мы начинаем применять антибиотики, зачастую неправильно, бактерии к ним понемногу приспосабливаются. Кроме того, они «хватают» системы устойчивости из почвенных бактерий. Они могут взять ген из другой бактерии и приспособить его для собственных нужд. Это происходит, например, на ферме, где скот подкармливают антибиотиками.

Полная версия статьи доступна подписчикам на сайте