AlphaGo: возможности и ограничения искусственного интеллекта | Большие Идеи

・ Управление инновациями
Статья, опубликованная в журнале «Гарвард Бизнес Ревью Россия»

AlphaGo: возможности и ограничения
искусственного интеллекта

Хотя человек не так точен, как машина, у нас есть преимущество: мы способны осознать собственную слабость и внести коррективы.

Автор: Дай Жунь Чан

AlphaGo: возможности и ограничения искусственного интеллекта

читайте также

Соскочить с крючка эмоций

Кристина Конглтон,  Сьюзен Дэвид

Как компании должны составлять прогнозы

Марк Хавкин,  Фриц Фоули

Что делать, если поставленная цель не достигается

Анна Козлова

Три простых вопроса для оценки собственного имиджа

Юлиана Лункина

Убедительная победа созданной Google программы AlphaGo над гроссмейстером Ли Седолем (4:1) на первый взгляд означает, что искусственный интеллект преодолел очередную веху в состязании против человека. Того гляди, машины вытеснят людей, даже менеджеров. Однако победа AlphaGo при всей ее убедительности показала также серьезный изъян искусственного интеллекта: машины все еще не блещут интуицией.

Google приобрел компанию DeepMind, создателя AlphaGo, в 2014 году за 500 миллионов долларов в рамках формировавшегося конгломерата похожих стартапов и предприятий в сфере разработки искусственного интеллекта. Алгоритм обучения позволяет AlphaGo строить и «стратегическую сеть», и «ценностную сеть», запоминать не только миллионы прежних матчей, сыгранных между людьми, но и те, которые система играла против других версий той же AlphaGo. Обозначения двух сетей, которые должны при этом соединиться, звучат по-менеджерски: программа нацелена на повышение эффективности, а не просто наращивание вычислительных способностей. «Стратегия» помогает сузить выбор ходов, которые с наибольшей вероятностью приведут к выигрышу, а «ценность» позволяет взвесить шансы и определить в данной позиции победителя, не доигрывая партию до конца. При четко прописанных правилах игры такое сокращение области поиска выглядит весьма полезным.

Но менеджер действует в конкурентной среде, где правила не так четко определены и, главное, различные исходы не могут быть по значимости приравнены друг к другу. Иными словами, в бизнесе вопрос не сводится к выигрышу или проигрышу: скорее важно, сколько получишь, если удастся выиграть, или насколько масштабен будет ущерб в случае поражения. Этот изъян искусственного интеллекта обнаружился в третьей партии, когда AlphaGo не стала наращивать свое преимущество, сделав вместо этого несколько «пустых ходов». В го каждая партия оценивается по отдельности, и программу интересовала только возможность выиграть конкретную игру, но в бизнесе чем больше успех в данной конкретной «партии», тем выше гарантии наименьших потерь на случай проигрыша в следующей. Если удалось одолеть противника один раз, возможно, его стоит добить окончательно.

Читайте материал по теме: Как руководители внедряли и применяли инновации в 1969 году

Еще одно преимущество AlphaGo, обернувшееся слабостью, — тайм-менеджмент. Специальный алгоритм следит за тем, чтобы программа равномерно тратила время на ход. Смысл в том, чтобы AlphaGo не превысила лимит и не оказалась бы под конец игры в цейтноте. Гроссмейстер Ли, напротив, потратил лишние минуты в самые ответственные моменты игры. И это произошло в тот единственный раз, когда программа проиграла, а проиграла именно потому, что допустила роковую ошибку, подчиняясь необходимости «эффективно» расходовать свое время. Задним числом ясно, что более продолжительный анализ мог бы подсказать ход получше. Так же обстоит дело и с бизнес-решениями: иногда они принимаются мгновенно, однако если компания сталкивается с непривычной ситуацией, последствия которой будут весьма значительны, нужно подумать, адаптироваться к обстоятельствам и реагировать на них. Искусственному интеллекту понадобится еще какое-то время, прежде чем он научится подобной оценке.

И наконец, присмотримся к алгоритму обучения. Хотя «машина» усвоила тысячелетний опыт человеческих игр, ее проигрыш был обусловлен ошибкой, допущенной, когда гроссмейстеру удалось захватить AlphaGo врасплох: он сделал неожиданный ход. Мало того, что программа неверно отреагировала, она далеко не сразу — лишь спустя много ходов — заметила этот просчет. Обучение в компаниях и по отраслям тоже имеет свои ограничения, особенно в современной экономике, где самые отдаленные явления сплетаются в один клубок и влияют друг на друга. Новые ситуации требуют новых решений, которых не отыщешь в «старых добрых» сценариях. Руководители начинают искать их в других местах — например, за пределами своего сектора экономики, в компаниях, которые сталкивались с аналогичными проблемами в принципиально иных отраслях. И хотя человек не так точен, как машина, у нас есть преимущество: мы способны осознать собственную слабость и внести коррективы, как это сделал гроссмейстер Ли, но AlphaGo заметила свою ошибку слишком поздно и уже не могла свернуть с избранного ею пути.

Читайте материал по теме: Как запустить двигатель инноваций за 90 дней

Об искусственном интеллекте часто говорят как о высшем воплощении человеческой мысли. Однако Ли, сказав, что проиграл только он сам, «а не человечество», подал пример смирения, осознания своего несовершенства и способности быстро оправляться от удара — все это искусственному интеллекту еще только предстоит развивать, прежде чем он и вправду сможет потеснить менеджеров.