Чем занять обучаемые машины? | Большие Идеи
Технологии
Статья, опубликованная в журнале «Гарвард Бизнес Ревью Россия»

Чем занять обучаемые машины?

Эндрю Макафи , Эрик Бриньолфссон
Чем занять обучаемые машины?

Уже более 250 лет главными факторами экономического роста остаются технологические инновации. Важнейшими из них становятся те, которые экономисты называют технологиями широкого применения, — в их числе паровая машина, электричество и двигатель внутреннего сгорания. Каждая такая инновация порождает волны сопутствующих разработок и открывает новые возможности. Так, двигатель внутреннего сгорания непосредственно «породил» автомобиль, самолет, бензопилу, газонокосилку, а косвенно — сетевую розничную торговлю, торговые центры, сквозное складирование, новые сети поставок и, если вдуматься, даже пригороды. Такие разные компании, как Walmart, UPS и Uber, научились использовать технологии для создания новых прибыльных бизнес-моделей.

В наши дни важнейшей технологией широкого применения стал искусственный интеллект и, в частности, машинное обучение — то есть способность машины улучшать свои результаты без участия человека. За последние несколько лет машинное обучение стало намного эффективнее и доступнее. Создаваемые сегодня системы способны самостоятельно овладевать навыками решения задач.

Почему это важно? По двум причинам. Во-первых, мы, люди, осознаем далеко не все, что умеем: мы не можем толком объяснить, каким образом узнаем соседа в лицо или выбираем ход в игре го. До появления машинного обучения эта неспособность осмыслять свои умения мешала нам их автоматизировать. А теперь это возможно.

Во-вторых, системы машинного обучения часто превосходят нас как своих учителей. Они достигают сверхчеловеческих результатов в самых разных сферах, включая выявление мошенничества и диагностику заболеваний. Эти блестящие «ученики» приходят во многие отрасли — и от них можно ждать колоссальной отдачи.

Искусственный интеллект способен вывести бизнес на качественно новый уровень. Хотя он уже используется в тысячах компаний по всему миру, его главные возможности пока не раскрыты. В ближайшие 10 лет отдача от внедрения ИИ резко возрастет: производство, розничная торговля, транспорт, финансовые услуги, здравоохранение, юриспруденция, реклама, страхование, развлечения, образование и прочие отрасли развернут свои процессы и бизнес-модели в сторону машинного обучения. Сегодня сложности связаны в основном с управлением, внедрением и бизнес-воображением.

Как это случалось со многими другими технологиями, на ИИ изначально возлагали слишком большие надежды. Машинное обучение, нейросети и другие варианты этой технологии часто упоминают в бизнес-планах, не понимая их истинных возможностей. Если какой-нибудь сайт знакомств объявит, что подбирает пары с помощью ИИ, это не сделает его эффективнее — но поможет привлечь средства. В этой статье мы попытаемся разобраться, каков истинный потенциал ИИ, где его стоит применять и что этому мешает.

советуем прочитать

Об авторах

Эндрю Макафи (Andrew Mcafee) — соучредитель и содиректор IDE, главный научный сотрудник Школы менеджмента Слоуна при MIT.

Эрик Бриньолфссон директор Программы цифровой экономики при MIT, профессор теории управления Школы управления Слоуна при MIT, научный сотрудник Национального бюро экономических исследований

Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать