Почему прорывные технологии не всегда помогают HR-менеджерам | Большие Идеи

・ Управление инновациями

Почему прорывные технологии не всегда
помогают HR-менеджерам

Что нужно предпринять, чтобы алгоритмы сделали работу HR эффективной

Автор: Вера Соломатина

Почему прорывные технологии не всегда помогают HR-менеджерам
NordWood Themes / Unsplash

читайте также

Как сделать хороших клиентов еще лучше

Карлотти Стив,  Мур Денис,  Эдди Юн

Семейные фирмы большому бизнесу

Блок Ален,  Качанер Николас,  Сталк Джордж

Хорошие новости для кофеманов

Ли Томас

Как избежать противоречий при управлении творческим процессом

Грэг Брандо,  Кент Лайнбэк,  Линда Хилл,  Эмили Трулав

В России HR-отрасль постепенно начинает использовать прорывные технологии. Можно встретить кейсы с применением искусственного интеллекта, больших данных, блокчейна и машинного обучения, которые делают работу с персоналом удобной и качественной. Еще в 2016-м Deloitte спрогнозировал, что аналитика больших данных войдет в 10 главных трендов года и будет одним из самых перспективных направлений развития отрасли. Уже на тот момент инструменты big data использовали примерно в 40% HR-департаментов компаний по всему миру. На рынке явно прослеживается стремительный рост этого показателя, хотя качество самих данных по-прежнему находится на низком уровне. 15% опрошенных участников исследования SAP и Deloitte хранят HR-данные в одной интегрированной системе, но при этом 35% обходятся без выстроенных процессов и систем, поддерживающих HR-аналитику. 60% респондентов и вовсе делают анализ по персоналу вручную с помощью стандартных офисных приложений. И причина таких показателей в недостаточном понимании компаниями необходимости правильно собирать, хранить и обрабатывать свои данные.

У многих компаний есть огромное желание попробовать новые ИТ-технологии для поиска и найма персонала, ведь тема, что называется, хайповая. Такие запросы поступают, например, от сельскохозяйственных компаний, которые ищут аграриев с умением читать геокарты, управлять дроном и взаимодействовать со сложным ПО и хотели бы привлечь к процессу поиска искусственный интеллект. Получается двоякая ситуация: с одной стороны, на рынке пока нет базовых знаний и навыков о том, как управлять данными, а у большинства компаний все еще нет систем, в которых данные хранятся, классифицируются и потом анализируются. Но при этом, с другой стороны, есть большая заинтересованность в новых технологиях и их применении при решении нестандартных задач.

Например, компания делает ежегодный срез по увеличению производительности труда в виде оценок персонала. Показатели за год улучшились на 2%. И тут встает вопрос: на 2% выросла производительность в компании или это просто оценки стали хорошими? Понять ситуацию можно, только если в компании есть централизованная платформа, которая хранит всю информацию в одном формате, с единой структурой. В HR важно, чтобы существовал общий, одинаковый для всех процессов алгоритм и информация о сотрудниках в любой момент могла бы обогащаться бизнес-данными компании: о продажах, выручке, привлечении новых клиентов и т.д.

Грейдинг — основа основ

Думаю, каждый менеджер по персоналу задавался вопросами, как быстро оценить, соответствует ли сотрудник компании занимаемой должности или, возможно, он ее уже перерос и ему надо предложить повышение. Часто у рекрутеров возникает задача подготовить описание вакансии и основных характеристик соискателя. Если наладить в компании систему грейдов, это существенно облегчит жизнь и убыстрит работу кадровых служб. Возьмем, к примеру, опыт SAP. В нашей компании давно существует внутренняя структура: пять уровней и более десяти функциональных областей. Данные грейдов используются во всех внутренних и внешних HR-процессах: оценке персонала, соответствии сотрудника занимаемой должности, повышении, рекрутменте и т.д. Когда менеджер ставит задачу найти сотрудника в отдел, рекрутер уже знает те характеристики, которым должен соответствовать соискатель, и может на первом этапе оценить его возможность работать в компании. Для каждого профиля и грейда есть описание навыков, которыми должен обладать сотрудник, и это существенно облегчает задачу при составлении описания вакансии и оценке персонала и помогает при пересмотре заработной платы в процессе бюджетирования. Все данные стандартизированы и хранятся в единой системе, причем не только по России, но и по всем 180 странам присутствия компании.

Роботизированный подбор

Весной мы проводили с компанией Deloitte исследование цифровой зрелости в HR и выяснили, что сегодня 6% опрошенных рекрутеров используют чат-боты для подбора персонала. Технология явно прижилась среди компаний, которые массово ищут сотрудников: в ритейле, продажах и сервисах. Первичный отбор удобно проводить с помощью виртуальных помощников: они же могут провести и отсев, если кандидат не вписывается в общие параметры вакансии, и донесут до соискателя более расширенное описание должности. Но после определенной стадии работы с соискателями в процессе все равно появляется рекрутер. И здесь мы опять возвращаемся к теме создания структуры данных на единой платформе и вовлечения всех участников процесса (кандидата, рекрутера, линейного начальника, а в международных компаниях еще и глобального руководителя) в одно общее пространство.

Если проанализировать поиск сотрудника от начала и до конца, станет ясно, что без обозначенных заранее единых параметров подбора достичь идеального результата очень сложно. И никакая роботизация, чат-боты и искусственный интеллект в этом случае не помогут компании найти «своего» идеального кандидата. В классическом варианте сначала один человек описывает должность, другой — добавляет к этому описанию стоимость его труда, то есть предполагаемую зарплату, третий решает к какому грейду его отнести. Каждый мыслит своими понятиями и придерживается личного опыта в принятии решений. Такие истории успешно не разрешаются, ведь без структурированных единых стандартов и заданных изначально параметров добиться выхода на работу идеального кандидата практически невозможно.

В таких случаях автоматизация подбора кадров не увеличит эффективность рекрутмента. Повторю, причина кроется в отсутствии заранее сформулированных должностных обязанностей. Чтобы такого не случалось, необходимо заранее определить весь функционал, который предполагается у соискателя. А дальше структурировать информацию для всех, кто имеет отношение к процессу организации работы сотрудника: рекрутера, менеджера по развитию персонала, компенсациям и льготам, непосредственного начальника. В компании все должны говорить на одном языке и понимать друг друга.

Хайповые темы для HR вроде применения алгоритмов, чатботов и блокчейна сейчас будоражат сознание российских специалистов. Все ищут практические примеры применения и возможности реализации этих технологий и забывают порой о самом важном — о базисе, стандартах и управлении данными своей компании. Это как раз то, с чего начинается долгий путь цифровой трансформации HR: хранилище данных, единые сквозные процессы, грейдинг, унификация действий. Сделайте первые и не самые простые шаги, а после этого на них благодатно добавятся новейшие технологии, которые способны действительно сотворить чудеса с вашим HR-подразделением и сделать его одним из самых эффективных в компании.

Об авторе. Вера Соломатина — директор по персоналу компании SAP CIS.