Берегитесь простых ответов, полученных от больших данных | Большие Идеи

・ Управление инновациями
Статья, опубликованная в журнале «Гарвард Бизнес Ревью Россия»

Берегитесь простых ответов, полученных от
больших данных

Увы, «среднестатистический результат» — это результат, ориентирующийся на среднее значение.

Автор: Дуглас Меррилл

Берегитесь простых ответов, полученных от больших данных

читайте также

Небольшие корректировки могут изменить поведение

Франческа Джино

Следи за собой, будь осторожен

Владимир Рувинский

Компаниям нужны два отдела кадров

Рэм Чаран

Хотите научиться думать?

Мариэтта Чудакова

Мощное и удобное в использовании программное обеспечение (программное обеспечение как сервис) и аналитические языки программирования (например, R) дали возможность всем сотрудникам, а не только фанатам больших данных уточнять различные параметры и показатели в работе компании. Внезапно все или почти все смогли разобраться в большинстве тонкостей процессов.

Такая прозрачность позволяет значительно большему числу людей подключаться к решению важных проблем фирмы, а значит, повышается вероятность их успешного исхода. Но есть один существенный недостаток в этой идеальной картине: добыв ответ на вопрос, даже «осмысленный», вы не знаете, получили ли вы важную или не столь существенную информацию.

Это теперь называют «эффектом кнопки»: призрак в машине всякий раз выдает правильный ответ, избавляя нас от необходимости думать. Но не все данные попадают в «машину», надо уметь хорошо ориентироваться в реальном и сложном мире, чтобы понять результаты, выданные «кнопкой».

Для анализа больших данных нужно, к примеру, кое-что понимать в самом «распределении данных». Многие статистические методы, в том числе те, которые преподают на курсах статистики в университетах, предполагают «нормальное распределение» данных. Существует и математическое описание такого распределения, однако привычнее так и называть график кривой нормального распределения Гаусса. Выглядит этот график как колокол: число наблюдений отмечается на оси ординат, самое большое значение находится посередине, распределение симметрично по обе стороны от среднего, и число результатов по обе стороны стремительно падает. Благодаря такому распределению 66% результатов попадает в одно стандартное отклонение выше или ниже среднего — и 95% результатов отличается от среднего (в плюс или минус) не более чем на два стандартных отклонения. Элементарные вычисления показывают, отличаются ли две группы результатов по каким-либо параметрам в «существенной мере» или же нет. И хотя на описание графика понадобилось много слов, он наглядно отвечает на интересующие большинство руководителей вопросы: «Поднимаются ли продажи?» или «Приходят ли посетители на новый сайт чаще, чем приходили на старый?»

Читайте материал по теме: Как руководители внедряли и применяли инновации в 1969 году

Довольно часто ответ находят с помощью простого статистического теста (z-критерий Фишера). Подробности нам знать не обязательно, но важно подчеркнуть, что z-тест опирается на нормальное распределение и в особенности на симметричное распределение стандартных отклонений.

Рассмотрим на примере, каким образом ненормальное распределение может запутать статистику. Кто выше: мужчины или женщины? Средний рост американца 175 см, что на 9% выше, чем в среднем у американок, то есть ответ положительный. Я решаю перепроверить и прошу 20 женщин и 20 мужчин из моей компании измерить свой рост. Как и ожидалось, эксперимент подтверждает статистику. А потом я приму на работу Дилана Постла, рост которого не превышает 135 см. Как только этот замечательный актер окажется в нашей компании, средний рост мужчин и женщин уравняется. А потом я приглашу актрису Сару Аллен, великаншу ростом 225 см. И пожалуйста, по статистике женщины оказались выше мужчин. Что произошло? Дилан и Сара — «выбросы», то, чего при нормальном распределении быть не должно. Простые методы статистики, которыми я воспользовался, весьма чувствительны к «выбросам» и потому часто дают неправильный результат.

Мы сразу видим, что Дилан и Сара — «выбросы», поскольку годами наблюдаем людей вокруг и знаем, какого они примерно роста. Но с другой статистикой, в том числе существенной для нас, такие накладки нередко происходят. Государственные и общественные проблемы обсуждаются со ссылками на статистику, и если статистика способна ошибиться в таком элементарном вопросе, как рост человека, что же она натворит в области здравоохранения или в дебатах о запрете на хранение личного оружия? Те же проблемы возникают и в бизнесе.

Читайте материал по теме: Как выманить у сотрудников хорошие идеи

Взять хотя бы тест A/B, с помощью которого выясняется, понравится ли клиентам новый дизайн того или иного продукта. Команда, проводящая тест, на основании среднестатистических результатов отчитывается: продукт B получил существенно более высокую оценку, чем А. Вроде бы все в порядке? Увы, «среднестатистический результат» — это результат, ориентирующийся на среднее значение. Оценка продукта выставляется в целых баллах, и здесь вроде бы не может быть среднего значения или стандартного отклонения. Откуда же они возьмутся? На шкале от 1 до 5 баллов 4 не равно дважды два. А значит… а значит, «существенно более высокая» оценка не так уж важна. А вы-то на нее полагались и потому пересмотрели всю линейку продуктов? Что ж, статистика может оказаться и правильной. А может — и случайной.

Я не говорю, что метод среднего и стандартного отклонений бесполезен. Но те, кто пользуется «кнопками» больших данных, должны знать, как работает этот метод и как интерпретировать полученный результат. Отчасти это очевидные вещи, хотя исследователи и их ухитряются упустить из виду. Но кое-какие навыки — высокое искусство, приобретаемое только с опытом.

Запомните главное, и пусть простит меня за такую пародию Льюис Кэрролл: «Кнопки страшись, сынок, предпосылок кусачих и результатов неверных».

Читайте по теме:

* принадлежит Meta, которая признана в России экстремистской и запрещена

Для того, чтобы сделать сайт оптимальным и постоянно совершенствовать его, мы используем файлы cookie. Продолжая пользоваться сайтом, вы даете согласие на использование файлов cookie. Подробнее.