Почему опасно мыслить категориями | Большие Идеи
Принятие решений
Статья, опубликованная в журнале «Гарвард Бизнес Ревью Россия»

Почему опасно мыслить категориями

Барт де Ланге , Филип Фернбах
Почему опасно мыслить категориями
Фото: Bruno Fontana

Скажите «та». А теперь «да». Попробуйте прочувствовать особенности артикуляции в том и в другом случае. В чем разница?

Сложный вопрос? На самом деле нет. Дело не в положении губ или языка, а в так называемом времени начала озвончения — интервале между началом движения языка, с одной стороны, и колебания голосовых связок — с другой. Граница лежит примерно на уровне 40 миллисекунд: если интервал больше, англоговорящий человек услышит «та», если меньше, то «да».

Поразительно, но вы никогда не услышите третьего варианта: только «та» или «да». Неважно, какова разница между интервалами у двоих говорящих: важно лишь, превышают эти интервалы 40 мс или нет. У одного время ­начала озвончения может составлять 80 мс, у другого 50 мс, но в обоих случаях получится «та». Стоит одному говорящему оказаться по другую сторону границы, разница в 10 мс станет значимой: на 45 мс это будет еще «та», а на 35 мс — уже «да». Удивительно, но факт.

Последнее время интернет пестрит подобными увлекательными фокусами, демонстрирующими дихотомию нашего восприятия. Вспомнить хотя бы аудиозапись, на которой одни слышали «Янни», а другие — «Лорел». Или платье, которое кому-то казалось сине-черным, а кому-то бело-золотым. В обоих случаях, как с «та» и «да», люди разбились на два лагеря, и все были готовы поручиться, что их вариант — единственно верный.

Наш мозг — машина категоризации, непрерывно упрощающая и структурирующая гигантские объемы неоднозначной информации в попытке осмыслить окружающий мир. Это одна из его важнейших задач: благодаря этой способности мы с первого взгляда понимаем, змея перед нами или палка.

Категоризация имеет смысл, если обладает двумя свойствами. Во-первых, она должна быть обоснованной: нельзя произвольно делить на классы однородную группу предметов. Обоснованные категории, как сказал бы Платон, это составные части природы — скажем, те же палки и змеи. Во-вторых, категоризация должна быть полезной: каждая категория должна быть наделена важной для вас характеристикой. Отличать змей от палок, например, необходимо для собственной безопасности.

Вроде бы все понятно. Вот только в бизнесе мы зачастую создаем и используем необоснованные и/или бесполезные категории, что может привести к серьезным ошибкам при принятии решений.

Взять хотя бы типологию Майерс — Бриггс — инструмент личностной оценки, который, как указывают издатели, используется для принятия решений в более чем 80% компаний из списка Fortune 500. В зависимости от того, какой из двух ответов на 93 вопроса выбрал сотрудник, его причисляют к одной из 16 категорий. Но проблема в том, что эти ответы нужно тщательно анализировать. Как люди их дают: опираясь на факты или ощущения? Многие наверняка скажут: «По ситуации». Но разве это нормально для серьезного теста? Респонденты вынуждены каждый раз примыкать к тому или иному лагерю, выбирая варианты, которые, возможно, сочли бы неподходящими для себя при повторном тестировании. Все ответы суммируются, и на сотрудника навешивается ярлык: он не интроверт, а экстраверт, ориентирован на результат, а не на процесс. Все эти категории совершенно безосновательны. Пользы от теста тоже нет: по типу личности нельзя предсказать ни успех в работе, ни удовлетворенность ею.

Отчего же в таком случае типология Майерс — Бриггс столь популярна? Оттого, что категориальное мышление заставляет нас верить в иллюзии.

Склонность все классифицировать может привести к четырем проблемам. Она способна заставить нас обобщать составные части категории, считая их более однородными, чем они есть; преувеличивать различия между членами различных категорий; дискриминировать одни категории и превозносить другие и коснеть в своих убеждениях, воспринимая созданную единожды структуру как незыблемую.

Обобщение

Разделяя сущности на виды, мы представляем себе их усредненные образы. Увы, из-за этого мы зачастую игнорируем множество вариаций, существующих в рамках каждого вида.

Миф о целевом потребителе. Гарвардский исследователь Тодд Роуз в своей книге «Долой среднее!» рассказывает, что в 1945 году одна из кливлендских газет провела конкурс на «типичную» женскую фигуру. Незадолго до этого ученые измерили и усреднили все части женского тела. Редакторы газеты использовали эти обобщенные данные как «норму», которой должна соответствовать победительница. Свои мерки на конкурс прислали 3864 участницы. Как вы думаете, сколько из них оказались близки к средним величинам по всем параметрам? Ни одна. Люди настолько отличаются друг от друга, что соответствовать усредненным показателям хотя бы по нескольким критериям одновременно практически невозможно.

То же можно сказать и о потребителях. Задумайтесь, что происходит во время сегментирования аудитории — стандартного занятия маркетологов. Цель этого процесса — разделить потребителей на категории и найти среди них потенциальных клиентов, то есть выделить категорию, заслуживающую особого внимания и стратегической приоритетности.

Сегментирование аудитории начинается, как правило, с опроса потребителей — им задают вопросы об их поведении, желаниях и демографических характеристиках. Затем при помощи алгоритма кластеризации респонденты подразделяются на группы по схожести ответов. Такой анализ редко позволяет выявить явно дифференцированные категории. Тем не менее, вместо того чтобы задуматься о валидности созданных кластеров, маркетологи переходят к следующим стадиям процесса — выведению средних показателей, профилированию и созданию портрета целевой аудитории.

Именно так рождаются категории вроде «мам на минивэнах». Проведя исследование, маркетолог обнаруживает интересный кластер, в котором, допустим, 60% респондентов — женщины, их средний возраст — 40 с небольшим, среднее число детей у них — 2,75. Глядя на эти цифры, легко отойти от конкретных данных и начать фантазировать о типичном клиенте именно с такими параметрами — о маме на минивэне.

Подобные ярлыки заставляют нас забыть о том, что любая категория неоднородна. В 2011 году ученые дважды показали участникам исследования девять силуэтов женщин с равномерно увеличивающимся индексом массы тела. В первый раз у силуэтов не было подписей (см. рис. 1), а во второй их подписали: «Анорексия», «Норма» и «Ожирение» (см. рис. 2).

При каждом просмотре участники должны были оценить увиденное по различным критериям. Изображения в обоих случаях были идентичны, но их восприятие ­разнилось. Например, если силуэты 7 и 9 были помечены как страдающие ожирением, участники утверждали, что эти женщины обладают похожими качествами и ведут схожий образ жизни. То же касалось «нормальных» силуэтов 4 и 6.

Сегменты, с которыми работает большинство компаний, так же неоднозначны, как и типы женских фигур. Потребители из одного сегмента часто ведут себя по-­разному. Чтобы снизить влияние обобщения, ­аналитикам и менеджерам стоит задаваться вопросом: насколько вероятно, что два клиента из разных кластеров окажутся более схожими, чем два клиента из одного кластера? Скажем, каков шанс, что вкусы в одежде «мамы на минивэне» окажутся ближе к вкусам не другой «мамы на минивэне», а «мамы-оригиналки»? Зачастую этот шанс ближе к 50%, чем к 0%.

Эффект сита. Обобщение может исказить решение о найме. Представьте себе, что вы отвечаете за подбор кадров. Вы разместили объявление о вакансии и получили 20 резюме. Вы отсеиваете кандидатов, сравнивая их технические навыки, и приглашаете на собеседование пятерых лучших.

Технические навыки этих пятерых заметно разнятся, но в дальнейшем это не слишком влияет на ваш вердикт: вы уже отобрали лучших по этому критерию и условно считаете их равными. Категориальное мышление ограничило ваш выбор, и дальше вы принимаете решение, оценив на собеседовании социальные навыки соискателей: обаяние, коммуникабельность и т. д. Конечно, все эти качества важны, но главным для многих должностей остаются технические навыки, а отсеивание мешает проверить их.

Аномалии финансовых инвестиций. Обобщение происходит и на финансовых рынках. Инвесторы условно классифицируют активы по размеру (с ­маленькой или большой капитализацией), отрасли (скажем, ­энергетика, здравоохранение), местонахождению и т. д. Такое ранжирование помогает им продраться через бесконечное количество вариантов инвестиций, но в то же время приводит к неэффективному — в плане рисков и ­окупаемости — вложению капитала. Например, в эпоху пузыря доткомов, в конце 1990-х, люди много и быстро инвестировали в интернет-компании, которые порой, кроме ­названия, ничто не связывало с новыми ­технологиями. Эта ошибка дорого обошлась множеству инвесторов. Еще пример: когда организация попадает в список S&P 500, ее акции начинают расти или падать в цене одновременно с акциями других фирм из списка, даже если к этому нет никаких предпосылок.

Преувеличение

Мысля категориями, вы раздуваете различия между ними. Это может привести к стереотипному восприятию людей из других групп, установке произвольных критериев при принятии решений и некорректным выводам.

Групповая динамика. Преувеличение может иметь серьезные последствия, ведь оно искажает наше мнение о членах социальных и политических групп. Исследования показывают, что люди с противоположными политическими убеждениями склонны переоценивать полярность взглядов друг друга.

Как вы думаете, кто больше озабочен, например, социальным неравенством — либералы или консерваторы? Если ваш ответ «либералы», то вы правы. В среднем они действительно придают этой проблеме больше значения, чем консерваторы. Тем не менее существуют консерваторы, больше тревожащиеся по поводу неравенства, чем многие либералы. Предположим, мы опросим на улице двух случайных прохожих — голосующего за консерваторов и за либералов. Какова вероятность того, что первый сочтет социальное неравенство более значимой темой, чем второй? Намного ближе к 50%, чем может показаться. Усредненные значения маскируют неизбежные совпадения между группами, раздувая различия — зачастую кажущиеся. Хотя средние показатели говорят о другом, многие консерваторы беспокоятся о неравенстве больше либералов.

Если вы американский либерал, вы наверняка убеждены: все консерваторы выступают против абортов, контроля над оборотом оружия и социальной ­поддержки населения. Если вы консерватор, то не сомневаетесь: все либералы мечтают об открытых границах и универсальной системе здравоохранения. На самом же деле убеждения людей, безусловно, варьируются в широчайших пределах.

Преувеличение, вызванное категориальным мышлением, особенно опасно сегодня, в век больших данных и профилирования клиентов. Например, известно, что Facebook* сортирует пользователей по идеологии («умеренные», «консерваторы», «либералы»), опираясь на историю поиска, и предоставляет эту информацию рекламодателям. У последних может сложиться впечатление, что разница между выделенными категориями существеннее, чем на самом деле. Парадоксальным образом это способно усилить реальные различия, ведь каждой категории будет предлагаться соответствующий рекламный контент. Именно это, видимо, произошло в 2016 году во время президентских выборов в США и кампании Brexit: Facebook* выдавал «консерваторам» и «либералам» разные материалы, дополнительно раскалывая общество.

Многие организации борются с последствиями такого преувеличения. Успех во многом зависит от того, способны ли представители разных отделов плодотворно сотрудничать. Однако если вы мыслите категориями, то можете недооценивать эффект от подобного взаимодействия. Вероятно, вы думаете, что оно не имеет смысла, люди не найдут общего языка, ведь аналитики — технари, не понимающие сути бизнеса, а маркетологи, наоборот, знают, как он функционирует, но не умеют работать с данными. Кстати, это одна из основных причин провала аналитических проектов.

Принятие решений. Преувеличение исподволь влияет и на принимаемые руководителями решения. Только представьте себе: тренеры НБА на 17% чаще меняют стартовую пятерку, если в предыдущей игре команда оказалась близка к победе (счет — 100:101), а не к поражению (счет — 100:99). Всего два очка разницы! При этом редкий тренер сменит состав при счете 100:106, однако озаботится заменой при 100:108, хотя разница та же самая. Проигрыш от выигрыша отличается качественно, а не количественно, и мы не смотрим на спортивные результаты как на некий континуум.

Каждый раз, когда мы принимаем решение, установив для себя некое пороговое значение, мы преувеличиваем небольшие различия. После финансового кризиса 2008 года правительство Бельгии решило спасти от банкротства компанию Fortis, входящую в группу BNP Paribas. В результате в собственности правительства оказались миллионы акций BNP Paribas. По данным бельгийской газеты De Standaard, в конце января 2018 года, когда цена этих акций превысила €67, руководство страны решило продать их, как только она достигнет €68. Этого не произошло: цена упала и сегодня составляет лишь €44.

Никто в правительстве, конечно, не мог предугадать подобного падения. Ошибка состояла не в неточности прогноза, а в решении продать все сразу и только в ­случае превышения конкретного порога цен. Разумнее было бы продать часть акций по одной цене, часть по другой и т. д.

Статистическая значимость. По мере того как поведенческая экономика и аналитика данных приобретают все большую популярность, компании все чаще прибегают к А/В-тестированию, чтобы оценивать свою эффективность. Одна из причин — такие тесты просто проводить и анализировать: нужно создать две версии ситуации, различающиеся одним фактором, поставить одну группу участников в условия версии А, другую — в условия версии В, а затем сравнить их поведение. Разница между группами, конечно, будет всегда — во многом за счет элемента случайности. Поэтому, чтобы определить, значима ли разница и свидетельствует ли она о влиянии нужного фактора, необходимо применять статистические методы. Что они показывают? Вероятность того, что разница того же масштаба могла бы наблюдаться, если бы фактор был несущественным. Эта вероятность известна как р-значение. Чем ближе р-значение к нулю, тем с большей уверенностью вы можете утверждать, что разница в проведенном тесте вызвана именно исследуемым фактором. Но как понять, достаточно ли она близка к нулю?

В 1925 году британский статистик и генетик Рональд Фишер принял волевое решение считать пороговым показатель 0,05. С тем же успехом он мог выбрать, например, 0,03; более того, Фишер рекомендовал каждый раз заново определять этот порог в зависимости от специфики конкретного исследования. Однако на это редко обращают внимание: уже почти 100 лет целые научные дисциплины слепо считают 0,05 волшебной границей, отделяющей сигнал от шума. Та же практика усвоена и бизнесом.

советуем прочитать

* деятельность на территории РФ запрещена

Об авторах

Барт де Ланге (Bart de Langhe) — профессор маркетинга в Школе бизнеса ESADE при Университете Рамона Льюля (Барселона).

Филип Фернбах (Philip Fernbach) — профессор маркетинга в Школе бизнеса Лидс при Университете Колорадо в Боулдере, соавтор книги «Иллюзия знания. Почему мы никогда не думаем в одиночестве» («КоЛибри», 2017).

Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать
Как совместные предприятия выручают в кризис
Джеймс Бэмфорд,  Джерард Бейнхэм,  Дэвид Эрнст
Эволюция СМО
Карен Флейт