Как научиться доверять искусственному интеллекту | Большие Идеи
Тренды

Как научиться доверять искусственному интеллекту

Мария Григорьева
Как научиться доверять искусственному интеллекту
Фото: franckinjapan / Unsplash

Любая новая технология, проникая в жизнь, вызывает набор не самых простых этических вопросов. В случае с искусственным интеллектом эта проблема выходит на новый уровень: машине доверяют право принятия жизненно важных решений.

По данным Accenture Research, 82% руководителей госструктур США считают, что ИИ будет массово работать рядом с людьми в качестве коллеги, сотрудника и надежного консультанта уже в самом ближайшем будущем — в течение последующих двух-трех лет. По данным другого исследования Accenture, около 65% организаций и компаний по всему миру планируют либо начать инвестиции в ИИ, либо расширить объем уже существующих трат в этом направлении в течение ближайшего года.

Вместе с тем проявляются и системные недостатки современных ИИ-решений: беспилотный транспорт попадает в фатальные ДТП, чат-боты быстро осваивают обсценную лексику и не стесняются ее использовать, возникают угрозы несанкционированного доступа к большому количеству разных видов данных с последующим неправомерным использованием без оповещения владельца. Все это провоцирует рост страхов по поводу опасных возможностей ИИ, а также защиты и конфиденциальности информации.

Некоторые ИИ-технологии, встраиваемые в уже существующие бизнес-процессы, все чаще отвечают за принятие таких решений, как выплата пособий, одобрение ипотеки и медицинская диагностика. Сегодня они получают широкое распространение, но остаются при этом наименее прозрачными: в отличие от действий беспилотника или складского робота влияние алгоритмов на привычные процессы и задачи не столь очевидны.

По этой причине организации, которые используют в своей практике алгоритмы ИИ, сталкиваются с этическими, а также правовыми и нормативными рисками. Один из наиболее актуальных — усиление и укрепление ИИ в практике применения существующих человеческих предубеждений. Некоторые из них можно назвать непреднамеренными: они возникают из-за дефектов планирования на этапе разработки и обучения ИИ-алгоритма. В других случаях принятие решения может быть искажено в результате обучения системы на недостаточно полных данных, где важные переменные могут не учитываться.

ИИ-решения не только должны быть свободны от предвзятости и придерживаться существующих современных норм и правил, они также должны быть понятны тем, на кого они влияют.

Этика: человек против машины

В работе искусственного интеллекта есть одна важнейшая особенность: обучаясь на определенном объеме данных, он выдает результат, который без анализа невозможно объяснить. Например, вы обращаетесь за кредитом в банк, ИИ анализирует вашу заявку и отклоняет ее. Почему это произошло? Какие факторы привели к тому, что машина признала вас ненадежным или невыгодным заемщиком? Не было ли это решение дискриминационным? Никто не знает. Это не выдуманная история. Такие ситуации возникают в финансовых компаниях, где искусственный интеллект помогает снижать долю невозвращенных кредитов.

Так происходит потому, что современные ИИ-алгоритмы — это сложные решения, у которых нет последовательного выполнения конечного перечня простых и легко объяснимых шагов. Они строятся на анализе и обработке огромных массивов данных с применением разных вероятностных и математических принципов. Работу таких алгоритмов невозможно объяснить на пальцах в короткий промежуток времени. Именно поэтому и требуются дополнительные средства, обеспечивающие возможность прослеживания прозрачности выполненных шагов и сделанных выводов.

Сейчас нормативно-правовая база для искусственного интеллекта в большинстве стран только развивается. В Европе уже есть первые регламенты, закрепляющие право человека на объяснение причин решения, принятого алгоритмом без участия человека. То есть любая система на базе ИИ, которая помогает принимать решение, не будет работать как «черный ящик», а может быть проанализирована экспертами по алгоритмам.

Искусственный интеллект решает задачи, ориентируясь исключительно на заложенные в него алгоритмы. Если они оказываются недостаточно продуманы, тогда ИИ может дискриминировать людей определенного пола, национальности или места проживания. Известен пример, когда поисковая машина по запросу «любящая бабушка» выдавала изображения только светлокожих женщин. В таких случаях человек должен заметить эту особенность и скорректировать работу алгоритма.

Основные направления, в которых сегодня чаще всего возникают этические вызовы при использовании ИИ:

Ответственность. С ростом роли ИИ становится труднее распределить ответственность за решения, которые он принимает. Если допущены ошибки, которые причинили ущерб, возникает вопрос: кто должен нести эти риски и компенсировать их?

советуем прочитать

Об авторе

Мария Григорьева — бывший управляющий директор консалтинговой компании Accenture Russia.

Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать
Почему степень MBA мешает понимать людей
Жаклин Картер,  Марисса Эфтон,  Расмус Хогард