«Умные» KPI: маленькие шаги на пути к общей цели | Большие Идеи
Стратегия

«Умные» KPI: маленькие шаги на пути к общей цели

Франсуа Канделон , Дэвид Кирон , Майкл Шрейг , Шервин Кодобенда , Майкл Чу
«Умные» KPI: маленькие шаги на пути к общей цели
Фото: Aline de Nadai / Unsplash

Согласовывать рутинные бизнес-процессы с корпоративной стратегией — важнейшая задача лидера. Но ее решение усложняют рыночная турбулентность и конкуренция, а также потребность во все новых цифровых технологиях для развития операций и процессов. Лидеры, понимающие, насколько важны передовые достижения, используют их для разработки, совершенствования и применения KPI.

Глобальный опрос более чем 3 тыс. менеджеров и 17 представителей высшего руководства показал: лидеры всех направлений экономики применяют ИИ, чтобы более успешно определять приоритеты, разрабатывать KPI и использовать их в совместной работе. Благодаря ИИ компании более осознанно добиваются соответствующих KPI стратегических целей. ИИ помогает не только повышать отдачу от KPI и получать более точную детализацию метрик в конкретных ситуациях, но и совершенствовать прогностические возможности. Все эти улучшения — как по отдельности, так и комплексно — позволяют глубже понимать происходящее в компании и усиливают взаимодействие различных функций для достижения стратегических результатов.

Лидеры понимают: чтобы точнее предвидеть и эффективнее использовать стратегические возможности и угрозы, компаниям нужен новый и более точный подход к измерению результатов работы. Руководители признают, что инновационные способы оценки на базе ИИ могут дать свежий взгляд на результаты, породить более адекватные нормы, усилить согласованность труда и повысить его ценность для бизнеса. Итоги нашего исследования представляют собой четкий, целостный ориентир для лидеров, желающих выстроить интегрированную систему взаимосвязанных KPI.

Основанные на ИИ, эти «умные» KPI готовы стать корпоративной системой GPS, подсказывающей сотруднику, где он находится в данный момент, куда ему следует направиться и как в эту точку удобнее добраться. Умные KPI более подробно и точно описывают, что творится в компании сегодня, что может ждать ее завтра и что должны в этой связи предпринять менеджеры. KPI, позволяющие заглянуть в будущее, — это шаг вперед по отношению к привычным, нескоординированным и медленно реагирующим на вызовы времени показателям.

Ниже мы обсудим примеры, иллюстрирующие, как компании из разных индустрий достигают стратегических целей с помощью новых технологий. Мы также приведем рекомендации, как улучшить KPI и согласовать операционные процессы со стратегическими задачами компании.

«Умными» KPI мы будем называть взаимосвязанные показатели на базе ИИ, с помощью которых можно предвидеть возможное развитие событий.

ИИ согласует рутинные операции со стратегическими целями

KPI и раньше указывали на то, как поведение сотрудников соотносится со стратегическими целями компании. Но сегодня большинство менеджеров считают, что KPI, которым они следуют, не отражают устремления организации и подлежат корректировке. Наше исследование доказывает, что лидеры, усовершенствовавшие KPI благодаря ИИ, чаще отмечают, что в компании улучшилось координирование различных функций. Такие руководители успешнее определяют приоритеты, выявляют и выстраивают взаимосвязи между показателями и быстрее начинают использовать KPI применительно к работе в командах. Они относятся к KPI скорее как к активам, которые нужно совершенствовать, чем как к результатам, которых нужно достичь.

ИИ расставляет приоритеты среди KPI

Какие KPI важнее, каких добиваться в первую очередь? Это известнейшая проблема реализации стратегии: фраза «Нам нужно лучше координироваться с KPI» стала рефреном качественной части нашего исследования. Опрашиваемые повторяли, что их руководители выдвигают на первый план те или иные показатели просто по наитию. При этом те, чья компания использовала для расстановки приоритетов ИИ, в 4,3 раза чаще остальных сообщали о росте согласованности функций в компании. Когда компании расставляют приоритеты KPI с помощью ИИ, им удается принимать решения на основе базы данных. Таким образом они закладывают фундамент для последовательной координации действий сотрудников с целями компании.

Датская транспортно-логистическая компания Maersk с помощью ИИ пересмотрела принципы оценки пропускной способности и продуктивности сети из 65 активов в портах, на судах и складах по всему миру. Линейные менеджеры должны были решить, на что сделать акцент при погрузке и разгрузке судов и грузовиков: увеличить ли пропускную способность до максимально возможной или добиваться строгого соблюдения графика? Какой KPI важнее: скорость или своевременность?

Подобные решения кардинально влияют на бизнес. Если добавить в контейнерный порт больше оборудования для погрузки и разгрузки, увеличится пропускная способность — а с ней в краткосрочной перспективе вырастут и затраты. Если ограничить оборудование необходимым для соблюдения графика, не будет лишних расходов — но и пропускную способность увеличить не удастся. Основываясь на опыте, ответственные работники в портах считали, что главный показатель, несомненно, — скорость, возможность разгрузить и загрузить контейнеровоз как можно быстрее.

Чтобы проверить эту гипотезу, специалисты по работе с данными Maersk разработали две цифровые модели на базе ИИ и просчитали их воздействие на всю цепочку создания ценности. Оказалось, что при использовании ограниченного количества оборудования компании удается избежать узких мест в перевалочных портах или при перегрузке с морского транспорта на автомобильный или железнодорожный.

Обнаружилось также, что ускорение в одном порту замедляет работу в других местах. Кроме того, при соблюдении стабильного графика компании удавалось экономить и делать все вовремя. Директор Maersk по данным Холли Ландри говорит, что замедление стало контринтуитивной метрикой. По ее словам, «использование цифрового двойника для оценки цепочки поставок и объяснило, и оправдало потребность снизить объемы оборудования. Экономия исчислялась миллионами на одном только терминале».

Теперь фирма пользуется цифровыми двойниками на всех этапах цепочки создания стоимости. Благодаря ИИ Maersk сделала ставку на верный KPI, что улучшило ее работу и повысило удовлетворенность клиентов за счет соблюдения сроков.

советуем прочитать

Об авторах

Франсуа Канделон (François Candelon) — старший партнер и управляющий Boston Consulting Group, глобальный директор Института Хендерсона BCG.

Дэвид Кирон (David Kiron) — редакционный директор MIT Sloan Management Review.

Майкл Шрейг (Michael Schrage) — научный сотрудник Института цифровой экономики Школы менеджмента Слоуна при Массачусетском технологическом институте.

Шервин Кодобенда (Shervin Khodabandeh) — старший партнер и управляющий директор Boston Consulting Group, один из руководителей практики искусственного интеллекта BCG в Северной Америке.

Майкл Чу (Michael Chu) — партнер и заместитель директора Boston Consulting Group.

Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать
«Как» или «почему»: что говорить, представляя инновационную идею
Дениз Фальчетти,  Джино Каттани,  Симоне Ферриани
Два урока для Тима Кука
Роберто Верганти
Что не так с Uber
Питер Штром